The hyperbolic complexification of quantum groups and the isomorphic relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L397
(http://iopscience.iop.org/0305-4470/25/8/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:18

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The hyperbolic complexification of quantum groups and the isomorphic relations

Zai-Zhe Zhong
Department of Physics, Liaoning Normal University, Dalian 116022, Liaoning, The People's Republic of China

Received

Abstract

In this paper we discuss the quantum group $\mathrm{GL}_{q}(n, H)$ obtained by a hyperbolic complexification of the quantum group $\mathrm{GL}_{q}(n)$, and prove that $\mathrm{GL}_{q}(n, H)$ is isomorphic to the direct product $\mathrm{GL}_{q}(n) \times \mathrm{GL}_{q}(n)$. In particular, $\mathrm{SU}_{q}(2, H)$ and $\mathrm{SU}_{q}(1,1, H)$ are isomorphic to $\mathrm{SL}_{q}(2)$.

We have proved [1] that there are the following local isomorphic relations between the hyperbolic complex linear Lie group $\operatorname{GL}(n, H)$ and the real linear Lie group $\mathrm{GL}(n, R)$

$$
\begin{gather*}
\mathrm{GL}(n, H) \xrightarrow{\text { local isomorphism }} \mathrm{GL}(n, R) \times \mathrm{GL}(n, R) \\
\text { embedding } \uparrow \begin{array}{c}
\text { embedding }
\end{array} \tag{1}\\
\mathrm{U}(\eta, H) \xrightarrow{\text { local isomorphism }} \mathrm{GL}(n, R)
\end{gather*}
$$

where the n-signature is $\eta=\operatorname{diag}(+1, \ldots,+1,-1, \ldots,-1)$. Therefore a problem is raised: are there the corresponding results for the quantum groups [2-4]? In this letter the answer is given.

In the first place, we discuss what is the hyperbolic complexification of the quantum group $\mathrm{GL}_{q}(n)$. We use the symbols in the book by Abe [5]. Suppose that A is a commutative ring, and \mathscr{A} is the A-algebra with the unit element $\mathbb{1}$, the structure maps are

$$
\begin{equation*}
\eta_{\mathscr{A}}: \quad A \rightarrow \mathscr{A} \quad \mu_{\mathscr{A}}: \quad \mathscr{A} \otimes_{A} \mathscr{A} \rightarrow \mathscr{A} \tag{2}
\end{equation*}
$$

obeying the relations

Let ε denote the hyperbolic pure imaginary unit, i.e. $\varepsilon^{2}=+1, \varepsilon \neq \pm 1$. According to common addition and multiplication, the set of all elements in the form of $a+\varepsilon b$ forms a commutative ring H [6], where a and b are real numbers. The characteristic of this ring is that there are mutual nullification divisors [1] z and z^{*},

$$
\begin{equation*}
z=\frac{1+\varepsilon}{2} \quad z^{*}=\frac{1-\varepsilon}{2} \quad z z^{*}=0 \quad z^{2}=z \quad z^{* 2}=z^{*} \tag{4}
\end{equation*}
$$

therefore z and z^{*} always play the roles 1 or 0 , respectively. In the following we only consider the case of $A=R^{1}$ (the real number ring), and suppose that all elements of \mathscr{A} are independent of ε. We define $\varepsilon x=x \varepsilon$ for $x \in \mathscr{A}$. Let \mathscr{A}_{H} be the set of all elements of the form $x+\varepsilon y, x, y \in \mathscr{A}$. The maps

$$
\begin{equation*}
\eta_{s t H}: \quad H \rightarrow \mathscr{A}_{H} \quad \mu_{\mathscr{A}_{H}}: \quad \mathscr{A}_{H} \otimes_{H} \mathscr{A}_{H} \rightarrow \mathscr{A}_{H} \tag{5}
\end{equation*}
$$

are defined by

$$
\begin{align*}
& \eta_{x+\varepsilon y}(a+\varepsilon b)=\eta_{x}(a)+\eta_{y}(b)+\varepsilon\left[\eta_{y}(a)+\eta_{x}(b)\right] \equiv(a+\varepsilon b)(x+\varepsilon y) \\
& \begin{aligned}
\mu_{S A_{H}}[(x+\varepsilon y) & \left.\otimes\left(x^{\prime}+\varepsilon y^{\prime}\right)\right] \\
= & \mu_{\mathscr{A}}\left(x \otimes x^{\prime}\right)+\mu_{\mathscr{A}}\left(y \otimes y^{\prime}\right)+\varepsilon\left[\mu_{\mathscr{A}}\left(x \otimes y^{\prime}\right)+\mu_{\mathscr{A}}\left(x^{\prime} \otimes y\right)\right] \\
\equiv & (x+\varepsilon y)\left(x^{\prime}+\varepsilon y^{\prime}\right) .
\end{aligned}
\end{align*}
$$

It can be easily verified that $\eta_{\mathscr{A}_{H}}$ and $\mu_{\mathscr{A}_{H}}$ satisfy (3) while \mathscr{A} is substituted by \mathscr{A}_{H}, therefore \mathscr{A}_{H} is an H-algebra with the structure maps $\eta_{\mathscr{A}_{H}}$ and $\mu_{\mathscr{A}_{H}}$. In this H-algebra we find a simpic and interesting identity which plays a key role in our discussions, i.e.

$$
\begin{align*}
{\left[\frac{1}{2}\left(x_{1}+y_{1}\right)+\right.} & \left.\frac{\varepsilon}{2}\left(x_{1}-y_{1}\right)\right]\left[\frac{1}{2}\left(x_{2}+y_{2}\right)+\frac{\varepsilon}{2}\left(x_{2}-y_{2}\right)\right] \\
& =\frac{1}{2}\left(x_{1} x_{2}+y_{1} y_{2}\right)+\frac{\varepsilon}{2}\left(x_{1} x_{2}-y_{1} y_{2}\right) \quad x_{i}, y_{i} \in \mathscr{A}_{H} \tag{7}
\end{align*}
$$

Generally, we have

$$
\begin{equation*}
\prod_{i=1}^{n}\left\{\frac{1}{2}\left(x_{i}+y_{i}\right)+\frac{\varepsilon}{2}\left(x_{i}-y_{i}\right)\right\}=\frac{1}{2}\left(\prod_{i=1}^{n} x_{i}+\prod_{i=1}^{n} y_{i}\right)+\frac{\varepsilon}{2}\left(\prod_{i=1}^{n} x_{i}-\prod_{i=1}^{n} y_{i}\right) \tag{8}
\end{equation*}
$$

where Π denotes the product in the natural order, i.e. $\Pi_{i=1}^{n} x_{i}=x_{1} x_{2} \ldots x_{n}$.
An element of $\mathrm{GL}_{q}(n)$ can be defined as an $n \times n$ matrix $M=\left[M_{i j}\right], M_{i j} \in \mathscr{A}$, and the Yang-Baxter equation is satisfied [4]

$$
\begin{equation*}
R(M \otimes \mathbb{1})(\mathbb{1} \otimes M)=(\mathbb{1} \otimes M)(M \otimes \mathbb{1}) R \tag{9}
\end{equation*}
$$

where R is the R-matrix. If \mathscr{A} and M, respectively, are substituted by \mathscr{A}_{H} and $M_{H}=\left[M_{(H) i j}\right], M_{(H) i j} \in \mathscr{A}_{H}$, then a quantum group $\mathrm{GL}_{q}(n, H)$ can be similarly defined which is the hyperbolic complexification of $\mathrm{GL}_{q}(n)$.

We discuss the relation between $\mathrm{GL}_{q}(n, H)$ and $\mathrm{GL}_{q}(n)$. Let the map ρ be defined by

$$
\begin{align*}
& \rho: \quad \mathrm{GL}_{q}(n) \times \mathrm{GL}_{q}(n) \rightarrow \mathrm{GL}_{q}(n, H) \\
& \rho(M, N)=Q \quad M, N \in \mathrm{GL}_{q}(N) \tag{10}\\
& Q_{i j}=\frac{1}{2}\left(M_{i j}+N_{i j}\right)+\frac{\varepsilon}{2}\left(M_{i j}-N_{i j}\right) .
\end{align*}
$$

In the first instance, we must prove that this definition is reasonable, i.e. Q really is a quantum matrix in $\mathrm{GL}_{q}(n, H)$. The tensor form of the Yang-Baxter equation (9) is

$$
\begin{equation*}
R_{i j k l} M_{k m} M_{l n} \times M_{j l} M_{i k} R_{k l m n} \tag{11}
\end{equation*}
$$

By using (7) we have

$$
\begin{align*}
R_{i j k l} Q_{k m} Q_{l n} & =R_{i j k l}\left[\frac{1}{2}\left(M_{k m} M_{l n}+N_{k m} N_{l n}\right)+\frac{\varepsilon}{2}\left(M_{k m} M_{l n}-N_{k m} N_{l n}\right)\right] \\
& =\left[\frac{1}{2}\left(M_{j l} M_{i k}+N_{j l} N_{i k}\right)+\frac{\varepsilon}{2}\left(M_{j l} M_{i k}-N_{j l} N_{i k}\right)\right] R_{k l m n} \tag{12}\\
& =Q_{j l} Q_{i k} R_{k l m n}
\end{align*}
$$

therefore Q is indeed a quantum matrix in $\mathrm{GL}_{q}(n, H)$.
Let us prove that ρ is an isomorphism. In fact,

$$
\begin{align*}
& \rho\left[(M, N) \cdot\left(M^{\prime}, N^{\prime}\right)\right]=\rho\left(M M^{\prime}, N N^{\prime}\right)=P \\
& P_{i j}=\frac{1}{2}\left(M_{i s} M_{s j}^{\prime}+N_{i s} N_{s j}^{\prime}\right)+\frac{\varepsilon}{2}\left(M_{i s} M_{s j}^{\prime}-N_{i s} N_{s j}\right) \tag{13}
\end{align*}
$$

By using (7) we have

$$
\begin{gather*}
P_{i j}=\left[\frac{1}{2}\left(M_{i s}+N_{i s}\right)+\frac{\varepsilon}{2}\left(M_{i s}-N_{i s}\right)\right]\left[\frac{1}{2}\left(M_{s j}^{\prime}+N_{s j}^{\prime}\right)+\frac{\varepsilon}{2}\left(M_{s j}^{\prime}-N_{s j}^{\prime}\right)\right] \\
=[\rho(M, N)]_{i s}\left[\rho\left(M^{\prime}, N^{\prime}\right)\right]_{s j} \tag{14}
\end{gather*}
$$

i.e.

$$
\begin{equation*}
\rho\left[(M, N) \cdot\left(M^{\prime}, N^{\prime}\right)\right]=\rho(M, N) \cdot \rho\left(M^{\prime}, N^{\prime}\right) \tag{15}
\end{equation*}
$$

Next, it is evident that

$$
\begin{equation*}
\rho(\mathbb{0}, \mathbb{d})=\mathbb{1} \tag{16}
\end{equation*}
$$

If $S=\left[S_{i j}\right]$ is an arbitrary element of $\mathrm{GL}_{q}(n, H)$, then $S_{i j}$ can be written as $S_{i j}=x_{i j}+\varepsilon y_{i j}$, $x_{i j}, y_{i j} \in \mathscr{A}$. By the Yang-Baxter equation, we have

$$
\begin{equation*}
R_{i j k i}\left(x_{k m}+\varepsilon y_{k m}\right)\left(x_{i n}+\varepsilon y_{i n}\right)=\left(x_{j l}+\varepsilon y_{j l}\right)\left(x_{i k}+\varepsilon y_{i k}\right) R_{k i m n} \tag{17}
\end{equation*}
$$

Since the R-matrix R is independent of the imaginary unit ε, (17) can be split into the real part and the imaginary part

$$
\begin{align*}
& R_{i j k l}\left(x_{k m} x_{l n}+y_{k m} y_{l n}\right)=\left(x_{j j} x_{i k}+y_{j l} y_{i k}\right) R_{k l m n} \\
& R_{i j k l}\left(x_{k m} y_{l n}+y_{k m} x_{t n}\right)=\left(x_{j j} y_{i k}+y_{j l} x_{i k}\right) R_{k l m n} . \tag{18}
\end{align*}
$$

From (18), it is easily seen that if

$$
\begin{equation*}
M_{i j}=x_{i j}+y_{i j} \quad N_{i j}=x_{i j}-y_{i j} \tag{19}
\end{equation*}
$$

then we have

$$
\begin{equation*}
M, N \in \mathrm{GL}_{q}(n) \quad \rho(M, N)=S \tag{20}
\end{equation*}
$$

i.e. the map ρ is full. Therefore the map ρ is indeed an isomorphism,

$$
\begin{equation*}
\rho: \quad \mathrm{GL}_{q}(n) \times \mathrm{GL}_{q}(n) \approx \mathrm{GL}_{q}(n, H) \tag{21}
\end{equation*}
$$

Equation (21) returns to the case of (1) as $q \rightarrow 1$; however $\operatorname{GL}(n)$ and $\mathrm{GL}(n, H)$ are not permeated with the limits of $\mathrm{GL}_{q}(n)$ and $\mathrm{GL}_{q}(n, H)$, respectively.

The quantum determinant of M is defined by

$$
\begin{equation*}
\operatorname{det}_{q}(M)=\sum_{\sigma \in S_{n}}^{n}(-q)^{-l(\sigma)} M_{1 \sigma_{1}} M_{2 \sigma_{2}} \ldots M_{n \sigma_{n}} \tag{22}
\end{equation*}
$$

where S_{n} is the symmetric group and $1(\sigma)$ is the length of σ with respect to the simple transformations. The following equation is easily obtained from (8)

$$
\begin{equation*}
\operatorname{det}_{q}[\rho(M, N)]=\frac{1+\varepsilon}{2} \operatorname{det}_{q}(M)+\frac{1-\varepsilon}{2} \operatorname{det}_{q}(N) \tag{23}
\end{equation*}
$$

in particular, we have

$$
\begin{equation*}
\operatorname{det}_{q}[\rho(M, N)]=\operatorname{det}_{q}(M) \tag{24}
\end{equation*}
$$

Therefore we obtain an isomorphism

$$
\begin{equation*}
\rho: \quad \mathrm{SL}_{q}(n) \times \mathrm{SL}_{q}(n) \approx \mathrm{SL}_{q}(n, H) \tag{25}
\end{equation*}
$$

Now we discuss the quantum groups $\mathrm{SU}_{q}(2, H)$ and $\mathrm{SU}_{q}(1,1, H)$. Suppose that \mathscr{A} is a C^{*}-algebra. Let $k= \pm 1$, and signature $\eta(k)=\operatorname{diag}(1, k)$. According to [7, 8], an element of $\mathrm{SU}_{q}[\eta(k)]$ can be written as a 2×2 matrix g

$$
g=\left[\begin{array}{cc}
\alpha & -q k \beta^{*} \tag{26}\\
\beta & \alpha^{*}
\end{array}\right] \quad \alpha, \beta \in \mathscr{A}
$$

then the Yang-Baxter equation and $\operatorname{det}_{q}(g)=1$ are equivalent to

$$
\begin{align*}
& g \eta(k) g^{*} \eta^{-1}(k)=\eta(k) g^{*} \eta^{-1}(k) g=\rrbracket \\
& g^{*}=\left[\begin{array}{cc}
\alpha^{*} & \beta^{*} \\
-q K \beta & \alpha
\end{array}\right] . \tag{27}
\end{align*}
$$

Similarly, if an element h of $\mathrm{SL}_{q}(2)$ is written as [8]

$$
h=\left[\begin{array}{cc}
a & q b \tag{28}\\
c & d
\end{array}\right] \quad \tilde{h}=\left[\begin{array}{cc}
d & -b \\
-q c & a
\end{array}\right] \quad a, b, c, d \in \mathscr{A}
$$

then the Yang-Baxter equation and $\operatorname{det}_{q}(h)=1$ are equivalent to

$$
\begin{equation*}
h \tilde{h}=\tilde{h} h=0 . \tag{29}
\end{equation*}
$$

The quantum group $\mathrm{SU}_{q}[\eta(k), H]$ is the hyperbolic complexification of $\mathrm{SU}_{q}[\eta(k)]$, $\mathrm{SU}_{q}[\eta(k), H] \subset \mathrm{GL}_{q}(2, H)$, and we require that the hyperbolic complex conjugation is included into the $*$-operator extended. Therefore an element g_{H} of $\mathrm{SU}_{q}[\eta(k), H]$ can be written as

$$
g_{H}=\left[\begin{array}{cc}
x+\varepsilon y & -q k\left(r^{*}-\varepsilon s^{*}\right) \tag{30}\\
r+\varepsilon s & x^{*}-\varepsilon y^{*}
\end{array}\right] \quad x, y, r, s \in \mathscr{A}
$$

and g_{H} satisfies (27).
Let the map θ be defined as

$$
\theta(g)=h_{H} \equiv\left[\begin{array}{cc}
x+y & -q k\left(r^{*}-s^{*}\right) \tag{31}\\
r+s & x^{*}-y^{*}
\end{array}\right] .
$$

We have

$$
\begin{equation*}
\theta=\pi \rho^{-1} \quad \theta\left(g^{*}\right)=\eta^{-1}(K) \tilde{h} \eta(K) \tag{32}
\end{equation*}
$$

where ρ is the isomorphism in (25), π is the projective map

$$
\begin{align*}
\pi: & \mathrm{SL}_{q}(2) \times \mathrm{SL}_{q}(2) \rightarrow \mathrm{SL}_{q}(2) \\
& \pi(M, N)=M \quad M, N \in \mathrm{SL}_{q}(2) \tag{33}
\end{align*}
$$

Therefore, from (27) we have
$h_{H} \tilde{h}_{H}=\pi \rho^{-1}\left(g_{H}\right) \eta(K) \pi \rho^{-1}\left(g_{H}^{*}\right) \eta^{-1}(K)=\pi \rho^{-1}\left[g_{H} \eta(K) g^{*} \eta^{-1}(K)\right]=\mathbb{1}$
$\tilde{h}_{H} h_{H}=0$
this means $h_{H} \in \mathrm{SL}_{q}(2)$. Evidently, θ is an isomorphism

$$
\begin{equation*}
\theta: \quad \mathrm{SU}_{q}[\eta(k), H] \approx \mathrm{SL}_{q}(2) \tag{35}
\end{equation*}
$$

In the above discussion we obtain the results corresponding to (1) for the case of quantum groups. It can be extended to the general $\mathbf{U}_{q}(\eta, H)$ and other quantum groups.

References

[1] Zai-Zhe Zhong 1985 On the hyperbolic complex linear symmetry groups and their local gauge transformation actions J. Math. Phys. 26 404-6
[2] Drinfeld V G 1986 Quantum groups Proc. Int. Congr. Math. Berkeley 1 798-820
[3] Manin Yu I 1988 Quantum groups and non-commutative geometry Montreal preprint CRM-1561
[4] Corrigan E, Fairlie D B, Fletcher P and R. Sasaki 1990 Some aspects of quantum groups and super-groups J. Math. Phys. 31 776-80
[5] Abe E 1977 Hopf Algebras (Cambridge: Cambridge University Press)
[6] Yaglom I M 1979 A Simple Non-Euclidean Geometry and its Physical Basis (New York: Springer) Suppl. B
[7] Woronowicz S L 1991 Unbounded elements affiliated with C^{*}-algebras and non-compact quantum groups Commun. Math. Phys. 136 399-432
[8] Aref'eva I Ya and Volovich I V 1991 Quantum group gauge fields Mod. Phys. Lett. A 6 893-907

